Scanning ion conductance microscopy of living cells.

نویسندگان

  • Y E Korchev
  • C L Bashford
  • M Milovanovic
  • I Vodyanoy
  • M J Lab
چکیده

Currently there is a great interest in using scanning probe microscopy to study living cells. However, in most cases the contact the probe makes with the soft surface of the cell deforms or damages it. Here we report a scanning ion conductance microscope specially developed for imaging living cells. A key feature of the instrument is its scanning algorithm, which maintains the working distance between the probe and the sample such that they do not make direct physical contact with each other. Numerical simulation of the probe/sample interaction, which closely matches the experimental observations, provides the optimum working distance. The microscope scans highly convoluted surface structures without damaging them and reveals the true topography of cell surfaces. The images resemble those produced by scanning electron microscopy, with the significant difference that the cells remain viable and active. The instrument can monitor small-scale dynamics of cell surfaces as well as whole-cell movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scanning Ion Conductance Microscopy for Studying Biological Samples

Scanning ion conductance microscopy (SICM) is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate...

متن کامل

Backstep scanning ion conductance microscopy as a tool for long term investigation of single living cells

Scanning ion conductance microscopy (SICM) is a suitable tool for imaging surfaces of living cells in a contact-free manner. We have shown previously that SICM in backstep mode allows one to trace the outlines of entire cell somata and to detect changes in cellular shape and volume. Here we report that SICM can be employed to quantitatively observe cellular structures such as cell processes of ...

متن کامل

Nanopipette exploring nanoworld

Nanopipettes, with tip orifices on the order of tens to hundreds of nanometers, have been utilized in the fields of analytical chemistry and nanophysiology. Nanopipettes make nanofabrication possible at liquid/solid interfaces. Moreover, they are utilized in time-resolved measurements and for imaging biological materials, e.g., living cells, by using techniques such as scanning ion-conductance ...

متن کامل

Contact-Free Scanning and Imaging with the Scanning Ion Conductance Microscope

Scanning ion conductance microscopy (SICM) offers the ability to obtain very high-resolution topographical images of living cells. One of the great advantages of SICM lies in its ability to perform contact-free scanning. However, it is not yet clear when the requirements for this scan mode are met. We have used finite element modeling (FEM) to examine the conditions for contact-free scanning. O...

متن کامل

Scanning ion conductance microscopy–a tool to investigate electrolyte-nonconductor interfaces

The scanning ion conductance microscope is a tool to investigate non-conducting surfaces in electrolyte solutions. It is based on the measurement of the change in access resistance arising when an electrolytefilled glass electrode approaches a non-conducting surface. The resistance changes before a mechanical contact between electrode tip and sample surface occurs and thus allows one to image s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 1997